Cloud Foundry Architecture

Team: "Pipes_and_Filters" {
Brett Borchardt
Marc_Johnson
Paul_Kleczka
Allan_Tokuda

}

Outline

Intro

Goals and Principles
Functional View and Scenarios
Concurrency View
Perspectives

Proposed Extension

What is Cloud Foundry?

Client

Application SAAS (Custom App)

—» Platform PAAS (Cloud Foundry)

Infrastructure | IAAS (AWS)

Server

Private
clouds

© cloudfoundry.com

Quality Perspectives

 Performance and Scalability
— Horizontal scaling of apps/services
— Ruby fibers

* Availability and Resilience
— Multi-tenant isolation

— Health manager

 Evolution

— Loosely coupled interfaces via messaging/REST

Architectural Principles

Principle 1: Open platform
Principle 2: Extensible architecture
Principle 3: Positive developer experience

Principle 4: Simple design
— Low efferent coupling

— RESTful communication and async. messaging
— l[dempotent service interfaces

Functional Scenarios

Target and Authenticate
Deploy Application
Provision and Bind Service
Start/Stop Application

Application Request by End User

Application
Developer

Functional View

HTTP ey

Async. Messaging =—>

: Other = =>
% <<External>> Route ,
Application User | Reduest
. | | TV L Router
oute
<<External>> ﬁ Ba ancer P s
Application itoute Droplet
Request Route sStarted
Developer Request
. Stage : I d : C L
Application C ou '
% Stager PEp—— Droplet
Controller 2
Start/Stop Execution Agent
. : / Start/ Instances :
. Stop
%gSerwce Gateway Provision B I
Provision i SSiice Heartbeat |
. EEllce ' Start/Stop: Rezzitsi
_ |
% Service Node Lﬁ% Health e v
Create : Manager T =8
Service ¥V |
% . . Droplet
Application Service <€ . _[®

Concurrency: Communication & State

<<process>>

Service Node

Service
Protocol

<<process>>

<<process>>

HTTP

Service Gateway

Cloud Controller

<<process group>>

Service Instance

HTTP

<<process>>

<<process group>>
NATS Message Bus

L

/@

Processes
Service
<<process>>
OS shell
DEA commands

<<process>>

<<process>>

Droplet

Router

HTTP

HTTP

<<process group>>
Cloud RDBMS

\

<<process>>

Health Manager

Concurrency: Messaging

<<process>>

<<process>>

Cloud Controller —

DEA 1

Deploy Application Flow

<<process>>

<<process>>

DEAn

Health Manager —

ﬂ

<<process>>

Restore Health Flow

<<process>>

Cloud Controller n

Cloud Controller 1

Concurrency: Fibers

<<process>>
Cloud Controller

<<fiber>>
<<process>>
Controller
Router EventMachine
|
|
: Model
|
Single Threaded <<process group>>
Dispatch via

Cloud RDBMS

Reactor Pattern

Async DB Driver

Concurrency: Fiber Scheduling

Blocking 10 CPU Time
orange
10 quanta * 10ms = 100ms

Threadz---_---_---T---—---—
10ms

Blocking |10

Fiber 1 ‘/.(r.e(i)............_...........

Fiber2- T E XXX
:CPUTlme

(orange)

Cooperative: 60ms

Source: http://www.igvita.com/2009/05/13/fibers-cooperative-scheduling-in-ruby/

Proposed Extension

e Auto-scaling: provide detailed means of
controlling how many instances of an app are
running
— Schedule regular increases and decreases
— Respond to demand pickup/dropoff
— Decide from system metrics

— Propagate scaling decisions

Questions?

Brett Borchardt
Marc Johnson
Paul Kleczka
Allan Tokuda

bborchardt@gmail.com
marc.e.johnson@gmail.com
kleczka@gmail.com
allan.tokuda@gmail.com

References

[1] Cade Metz, Man Survives Steve Ballmer’s Flying Chair To Build '21st Century Linux’,
http://www.wired.com/wiredenterprise/2011/11/cloud-foundry/all/1

[2] [3] Derek Collison - Distributed Design and Architecture of Cloud Foundry
http://www.slideshare.net/derekcollison/design-of-cloud-foundry

Goals

* Developer Productivity
— wide variety of frameworks and services
— seamless integration into applications
— simple deployment model and toolset

* Open System
— Extensible frameworks + services.
— Runs public, private, or hybrid
— Runs on a virtual machine

e Faster Delivery
— Simple and high performance framework
— Third-party (or enterprise) integration
— “Micro” cloud on developer machine

What is Cloud Foundry? (Intro)

Multi-Language
* Ruby, Java, Scala, Node.js,Erlang, Python, PHP..
Multi-Framework

* Rails, Sinatra, Spring, Grails, Express, Lift
Multi-Services

 MySQL, Postgres, MongoDB, Redis, RabbitMQ,
Multi-Cloud, Multi-laaS

 vSphere, MicroCloud, OpenStack, AWS

What is Cloud Foundry? (Intro)

* Open Platform as a Service (PAAS)
“Linux of the Cloud” :

— Makes deploying and scaling fast and easy

— Open source (written in Ruby)

— Supports multiple development frameworks ,
extensible

— Public clouds, private clouds, and “micro-cloud”
which can be run on a PC

Not VMs, Memory, Storage, Networks, CPU

Functional View

Registers and
Reqisters and Router
unregisters B nreg-sters
Routes REST API Routes droplet
requests requests
Orchestrates
(Start, Stop, Find)
Sends droplet
|
D;%pmeé::::sge heart beats and —
exit messages
Yy
L] L
Droplet : 1
start/stop —— Health Manager
Cloud Controller requests Droplet Execution

Advertise
Service

Provision and
unprovision

'

Persists droplets
and provisioned
services

Service "A”
Provisioning Agent

Agent (DEA)

Periodically scans
for consistency

'

Guest applications

consume
Provision Service
and - "A"

unprovision

Reference: [3]

May be the provided VMC
client or another custom
client, such as an IDE plugin
designed to work with Cloud
Foundry.

Rich interface with functionality to: B
1) Manage users

2) Get cloud status

3) Control services

4) Control applications

5) Get application status

the Client
N I
\\ |
N |
A I
N |
Al ! {type=REST,
AN I protocol=HTTP}
_______ NN S | N
Stager : {type=REST, \\\ :
! protocol=HTTP} NS
I
B = — — i — Sl T — — Control Cloud
Stage Application {protocol=TCP,

Functional

View

«external»
Client

{type=REST,

May be a web B
browser, another

external application,

or even another

application deployed

in Cloud Foundry.

protocol=HTTP}

These requests
originate from

I type=NATS async} |

Route Request

Load Balancer

{protocol=HTTP}

Route Request

«external»
Application User

1
: {protocol=HTTP}

These requests originate
from the Application User

{protocol=HTTP}
Router r-————-—-—-—

Register Application

—— i ——————— e ———————

-)
g
l Stage Application {protocol=TCP,

: type=NATS async}

{type=REST,I— ——————

Cloud Controller

protocol=HTTP}

CDI/ Provision Service
Service Gateway

{type=NATS
async}

Provision Service

_O<______

{protocol=TCP,
type=NATS async}:

{protocol=TCP,

Service Node

Health Manager

I
I
I type=NATS async} |
I
I

| X
— Droplet Heartbeat L job}

}f Create Service

Application Service ——CX_ Consume Service
I

There will be one or more of these components
running for each type of service supported.

Start/Stop Droplet

I {protocol=TCP,
I type=NATS async}

1
Start/Stop Instances

e e e e e e e e e

Functional View

{protocol=TCP,
type=NATS async}

{type=EventMachine
async job}

= U

{type=EvéntMachine

|
|
|
|
|
|
|
|
|
|
|
|
1
1
1
1
1
6/ Get Status

Droplet

Application Request

