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Quality Perspectives

 Performance and Scalability
— Horizontal scaling of apps/services
— Ruby fibers

* Availability and Resilience
— Multi-tenant isolation

— Health manager

 Evolution

— Loosely coupled interfaces via messaging/REST



Architectural Principles

Principle 1: Open platform
Principle 2: Extensible architecture
Principle 3: Positive developer experience

Principle 4: Simple design
— Low efferent coupling

— RESTful communication and async. messaging
— l[dempotent service interfaces



Functional Scenarios

Target and Authenticate
Deploy Application
Provision and Bind Service
Start/Stop Application

Application Request by End User

Application
Developer



Functional View
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Concurrency: Communication & State
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Concurrency: Messaging
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Concurrency: Fibers
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Concurrency: Fiber Scheduling
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Proposed Extension

e Auto-scaling: provide detailed means of
controlling how many instances of an app are
running
— Schedule regular increases and decreases
— Respond to demand pickup/dropoff
— Decide from system metrics

— Propagate scaling decisions
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Goals

* Developer Productivity
— wide variety of frameworks and services
— seamless integration into applications
— simple deployment model and toolset

* Open System
— Extensible frameworks + services.
— Runs public, private, or hybrid
— Runs on a virtual machine

e Faster Delivery
— Simple and high performance framework
— Third-party (or enterprise) integration
— “Micro” cloud on developer machine



What is Cloud Foundry? (Intro)

Multi-Language
* Ruby, Java, Scala, Node.js,Erlang, Python, PHP..
Multi-Framework

* Rails, Sinatra, Spring, Grails, Express, Lift
Multi-Services

 MySQL, Postgres, MongoDB, Redis, RabbitMQ,
Multi-Cloud, Multi-laaS

 vSphere, MicroCloud, OpenStack, AWS



What is Cloud Foundry? (Intro)

* Open Platform as a Service (PAAS)
“Linux of the Cloud” :

— Makes deploying and scaling fast and easy

— Open source (written in Ruby)

— Supports multiple development frameworks ,
extensible

— Public clouds, private clouds, and “micro-cloud”
which can be run on a PC

Not VMs, Memory, Storage, Networks, CPU



Functional View
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May be the provided VMC
client or another custom
client, such as an IDE plugin
designed to work with Cloud
Foundry.

Rich interface with functionality to: B
1) Manage users

2) Get cloud status

3) Control services

4) Control applications

5) Get application status
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